**Journal**

[1] T. Liu, N. Wolfe, C. D. Carothers, W. Ji, and X. G. Xu, “Optimizing the Monte Carlo neutron cross-section construction code, XSBench, for MIC and GPU platforms,” *Nuclear Science and Engineering, *vol. 185, pp. 232-242, 2017.

[2] T. Liu, X. G. Xu, and C. D. Carothers, “Comparison of two accelerators for Monte Carlo radiation transport calculations, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor: a case study for x-ray CT imaging dose calculation,” *Annals of Nuclear Energy, *vol. 82, pp. 230-239, 2015.

[3] X. G. Xu, T. Liu, L. Su, X. Du, M. Riblett, W. Ji*, et al.*, “ARCHER, a new Monte Carlo software tool for emerging heterogeneous computing environments,” *Annals of Nuclear Energy, *vol. 82, pp. 2-9, 2015.

[4] L. Su, Y. Yang, B. Bednarz, E. Sterpin, X. Du, T. Liu*, et al.*, “ARCHER-RT, A photon-electron coupled Monte Carlo dose computing engine for GPU: software development and application to helical tomotherapy,” *Medical Physics, *vol. 41, p. 071709, 2014.

[5] D. Zhang, A. Padole, X. Li, S. Singh, R. D. A. Khawaja, D. Lira*, et al.*, “In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans,” *Medical Physics, *vol. 41, p. 091911, 2014.

**Conference**

[1] H. Lin, T. Liu, L. Su, C. Shi, X. Tang, D. Adam*, et al.*, “Monte Carlo modeling and simulation of the Varian TrueBeam LINAC using heterogeneous computing,” *Medical Physics, *2017.

[2] T. Liu, H. Lin, B. Bednarz, C. Shi, X. Tang, and X. G. Xu, “Fast Monte Carlo source modeling and dose calculation for magnetic-resonance imaging-guided radiation therapy (MRIgRT),” presented at the 6th International Workshop on Computational Human Phantoms (CP2017), Annapolis, Maryland, USA, 2017.

[3] T. Liu, H. Lin, L. Yang, H. Liu, Z. Wang, X. Pei*, et al.*, “Fast dose calculation for magnetic-resonance imaging-guided radiation therapy (MRIgRT) using GPU-based Monte Carlo code ARCHER,” *Medical Physics, *2017.

[4] H. Lin, T. Liu, L. Su, B. Bednarz, P. Caracappa, and X. G. Xu, “Modeling of radiotherapy Linac source terms using ARCHER Monte Carlo code: performance comparison for GPU and MIC parallel computing devices,” in *13th International Conference on Radiation Shielding & 19th Topical Meeting of the Radiation Protection and Shielding Division (ICRS-13 & RPSD 2016)*, France, Paris, 2016.

[5] T. Liu, H. Lin, Y. Gao, P. Caracappa, G. Wang, W. Cong*, et al.*, “Radiation dose simulation for a newly proposed dynamic bowtie filters for CT using fast Monte Carlo methods,” *Medical Physics, *vol. 43, p. 3861, 2016.

[6] T. Liu, H. Lin, L. Su, C. Shi, X. Tang, B. Bednarz*, et al.*, “Modeling of radiotherapy Linac source terms using ARCHER Monte Carlo code: performance comparison of GPU and MIC computing accelerators,” *Medical Physics, *vol. 43, p. 3732, 2016.

[7] T. Liu, N. Wolfe, H. Lin, K. Zieb, W. Ji, P. Caracappa*, et al.*, “Performance study of Monte Carlo codes on Xeon Phi coprocessors — testing MCNP 6.1 and profiling ARCHER geometry module on the FS7ONNi problem,” in *13th International Conference on Radiation Shielding & 19th Topical Meeting of the Radiation Protection and Shielding Division (ICRS-13 & RPSD 2016)*, France, Paris, 2016.

[8] T. Liu, H. Lin, P. F. Caracappa, and X. G. Xu, “Extension of a GPU/MIC based Monte Carlo Code, ARCHER, to internal radiation dose calculations,” *Health Physics, *vol. 109, p. S56, 2015.

[9] T. Liu, H. Lin, X. G. Xu, and M. Stabin, “Development of a nuclear medicine dosimetry module for the GPU-Based Monte Carlo code ARCHER,” *Medical Physics, *vol. 42, p. 3661, 2015.

[10] T. Liu, N. Wolfe, C. D. Carothers, and X. G. Xu, “Development of a medical physics Monte Carlo radiation transport code ARCHER,” in *GPU Technology Conference 2015*, San Jose, CA, USA, 2015.

[11] T. Liu, N. Wolfe, L. Su, C. D. Carothers, B. Bednarz, and X. G. Xu, “Near real-time GPU and MIC-based Monte Carlo code ARCHER for radiation dose calculations in voxelized and mesh phantoms,” presented at the 5th International Workshop on Computational Human Phantoms (CP2015), Seoul, Korea, 2015.

[12] N. Wolfe, C. D. Carothers, T. Liu, and X. G. Xu, “Concurrent CPU, GPU and MIC execution algorithms for ARCHER Monte Carlo code involving photon and neutron radiation transport problems,” in *Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method (M&C+SNA+MC 2015)*, Nashville, TN, USA, 2015.

[13] X. Du, T. Liu, L. Su, P. F. Caracappa, and X. G. Xu, “Extension of ARCHER Monte Carlo code to health physics dosimetry and shielding design: preliminary results,” *Health Physics, *vol. 107, p. S38, 2014.

[14] X. Du, T. Liu, L. Su, W. Ji, P. F. Caracappa, and X. G. Xu, “Development of CSG-based radiation shielding module for ARCHER: preliminary results for photons,” in *Radiation Protection and Shielding Division of the American Nuclear Society 2014*, Knoxville, TN, USA, 2014.

[15] H. Lin, T. Liu, L. Su, X. Du, Y. Gao, P. F. Caracappa*, et al.*, “Formation of computational phantoms from CT numbers for use in the ARCHER Monte Carlo code,” *Health Physics, *vol. 107, p. S98, 2014.

[16] T. Liu, X. Du, L. Su, Y. Gao, W. Ji, D. Zhang*, et al.*, “Testing of ARCHER-CT, a fast Monte Carlo Code for CT dose calculation: experiment versus simulation,” *Transactions of the American Nuclear Society, *vol. 110, p. 481, 2014.

[17] T. Liu, X. Du, L. Su, Y. Gao, W. Ji, D. Zhang*, et al.*, “Monte Carlo CT dose calculation: a comparison between experiment and simulation using ARCHER-CT,” *Medical Physics, *vol. 41, p. 424, 2014.

[18] T. Liu, X. Du, L. Su, W. Ji, and X. G. Xu, “Development of ARCHER-CT, a fast Monte Carlo code for patient-specific CT dose calculations using Nvidia GPU and Intel coprocessor technologies,” in *GPU Technology Conference 2014*, San Jose, CA, USA, 2014.

[19] T. Liu, L. Su, X. Du, P. F. Caracappa, and X. G. Xu, “Comparison of accuracy and speed of ARCHER with MCNP for organ dose calculations from external photon beams under standard irradiation geometries,” *Health Physics, *vol. 107, p. S114, 2014.

[20] T. Liu, L. Su, X. Du, H. Lin, K. Zieb, W. Ji*, et al.*, “Parallel Monte Carlo methods for heterogeneous hardware computer systems using GPUs and coprocessors: recent development of ARCHER code,” in *Radiation Protection and Shielding Division of the American Nuclear Society 2014*, Knoxville, TN, USA, 2014.

[21] N. Wolfe, T. Liu, C. Carothers, and X. G. Xu, “Heterogeneous concurrent execution of Monte Carlo photon transport on CPU, GPU and MIC,” in *Proceedings of the 4th Workshop on Irregular Applications: Architectures and Algorithms*, 2014, pp. 49-52.

[22] X. Du, T. Liu, W. Ji, X. G. Xu, and F. B. Brown, “Evaluation of vectorized Monte Carlo algorithms on GPUs for a neutron eigenvalue problem,” in *Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013)*, Sun Valley, Idaho, USA, 2013, pp. 2513-2522.

[23] X. Du, T. Liu, L. Su, M. Riblett, and X. G. Xu, “A hardware accelerator based fast Monte Carlo code for radiation dosimetry: software design and preliminary results,” *Medical Physics, *vol. 40, p. 475, 2013.

[24] T. Liu, X. Du, W. Ji, X. G. Xu, and F. B. Brown, “A comparative study of history-based versus vectorized Monte Carlo methods in the GPU/CUDA environment for a simple neutron eigenvalue problem,” in *Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo (SNA & MC 2013)*, Paris, France, 2013.

[25] T. Liu, X. Du, and X. G. Xu, “Affordable supercomputer-based Monte Carlo CT dose calculations: a hardware comparison between Nvidia M2090 GPU and Intel Xeon Phi 5110p coprocessor,” *Medical Physics, *vol. 40, p. 459, 2013.

[26] T. Liu, W. Ji, and X. G. Xu, “Development of GPU-based Monte Carlo code for fast CT imaging dose calculation on CUDA Fermi architecture,” in *International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 13)*, Sun Valley, ID, 2013.

[27] T. Liu, X. G. Xu, and C. D. Carothers, “Comparison of two accelerators for Monte Carlo radiation transport calculations, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor: a case study for x-ray CT imaging dose calculation,” in *Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo (SNA & MC 2013)*, Paris, France, 2013.

[28] L. Su, X. Du, T. Liu, and X. G. Xu, “GPU-accelerated Monte Carlo electron transport methods: development and application for radiation dose calculations using six GPU cards,” in *Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo (SNA & MC 2013)*, Paris, France, 2013.

[29] L. Su, X. Du, T. Liu, and X. G. Xu, “Fast Monte Carlo electron-photon transport code using hardware accelerators: preliminary results for brachytherapy and radionuclide therapy cases,” *Medical Physics, *vol. 40, p. 397, 2013.

[30] X. G. Xu, T. Liu, L. Su, X. Du, M. Riblett, W. Ji*, et al.*, “An update of ARCHER, a Monte Carlo radiation transport software testbed for emerging hardware such as GPUs,” *Transactions of the American Nuclear Society, *vol. 108, pp. 433-434, 2013.

[31] X. G. Xu, T. Liu, L. Su, X. Du, M. J. Riblett, W. Ji*, et al.*, “ARCHER, a new Monte Carlo software tool for emerging heterogeneous computing environments,” in

[32] T. Liu, A. Ding, W. Ji, X. G. Xu, C. D. Carothers, and F. B. Brown, “A Monte Carlo neutron transport code for eigenvalue calculations on a dual-GPU system and CUDA environment,” in *International Topical Meeting on Advances in Reactor Physics (PHYSOR 2012)*, Knoxville, TN, USA, 2012.

[33] T. Liu, A. Ding, and X. G. Xu, “Accelerated Monte Carlo methods for photon dosimetry using a dual-GPU system and CUDA,” *Medical Physics, *vol. 39, p. 3818, 2012.

[34] T. Liu, A. Ding, and X. G. Xu, “GPU-based Monte Carlo methods for accelerating radiographic and CT imaging dose calculations: feasibility and scalability,” *Medical Physics, *vol. 39, p. 3876, 2012.

[35] T. Liu, L. Su, A. Ding, W. Ji, C. D. Carothers, and X. G. Xu, “GPU/CUDA-ready parallel Monte Carlo codes for reactor analysis and other applications,” *Transactions of the American Nuclear Society, *vol. 106, pp. 378-379, 2012.

[36] L. Su, T. Liu, A. Ding, and X. G. Xu, “A GPU/CUDA based Monte Carlo code for proton transport: preliminary results of proton depth dose in water,” *Medical Physics, *vol. 39, p. 3945, 2012 2012.

[37] A. Ding, T. Liu, C. Liang, W. Ji, M. S. Shepard, X. G. Xu*, et al.*, “Evaluation of speedup of Monte Carlo calculations of simple reactor physics problems coded for the GPU/CUDA environment,” in *International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 11)*, Rio de Janeiro, Brazil, 2011.